Perturbation behavior of a multiple eigenvalue in generalized Hermitian eigenvalue problems
نویسندگان
چکیده
منابع مشابه
Erratum: Perturbation of Partitioned Hermitian Definite Generalized Eigenvalue Problems
The main purpose of this erratum is to correct mistakes in the proof of Theorem 2.4 of [R.-C. Li et al., SIAM J. Matrix Anal. Appl., 32 (2011), pp. 642–663] and in the inequalities (2.23), (2.24), and (2.25) on p. 653 of the same paper.
متن کاملPerturbation of Partitioned Hermitian Definite Generalized Eigenvalue Problems
This paper is concerned with the Hermitian definite generalized eigenvalue problem A− λB for block diagonal matrices A 1⁄4 diagðA11; A22Þ and B 1⁄4 diagðB11; B22Þ. Both A and B are Hermitian, and B is positive definite. Bounds on how its eigenvalues vary when A and B are perturbed by Hermitian matrices are established. These bounds are generally of linear order with respect to the perturbations...
متن کاملPerturbation of Partitioned Hermitian Generalized Eigenvalue Problem
We are concerned with the perturbation of a multiple eigenvalue μ of the Hermitian matrix A = diag(μI,A22) when it undergoes an off-diagonal perturbation E whose columns have widely varying magnitudes. When some of E’s columns are much smaller than the others, some copies of μ are much less sensitive than any existing bound suggests. We explain this phenomenon by establishing individual perturb...
متن کاملA New Inexact Inverse Subspace Iteration for Generalized Eigenvalue Problems
In this paper, we represent an inexact inverse subspace iteration method for computing a few eigenpairs of the generalized eigenvalue problem Ax = Bx [Q. Ye and P. Zhang, Inexact inverse subspace iteration for generalized eigenvalue problems, Linear Algebra and its Application, 434 (2011) 1697-1715 ]. In particular, the linear convergence property of the inverse subspace iteration is preserved.
متن کاملPerturbation of Palindromic Eigenvalue Problems
We investigate the perturbation of the palindromic eigenvalue problem for the matrix quadratic P (λ) ≡ λA1 + λA0 + A1, with A0, A1 ∈ Cn×n and A0 = A0. The perturbation of palindromic eigenvalues and eigenvectors, in terms of general matrix polynomials, palindromic linearizations, (semi-Schur) anti-triangular canonical forms, differentiation and Sun’s implicit function approach, are discussed.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: BIT Numerical Mathematics
سال: 2010
ISSN: 0006-3835,1572-9125
DOI: 10.1007/s10543-010-0254-8